Assignment 11.

This homework is due *Thursday*, November 29.

Collaboration is welcome. If you do collaborate, make sure to write/type your own paper and *credit your collaborators*. Your solutions should contain full proofs. Bare answers will not earn you much. Extra problems is due December 7.

1. Quick reminder

Metric space is a pair (X, ρ) , where X is a nonempty set and ρ is a function $\rho: X \times X \to \mathbb{R}$, called metric, such that $\forall x, y, z \in X$

- (1) $\rho(x,y) \ge 0$,
- (2) $\rho(x,y) = 0$ if and only if x = y,
- (3) $\rho(x,y) = \rho(y,x),$
- (4) $\rho(x,y) \le \rho(x,z) + \rho(z,y)$.

Normed linear space is a par $(V, \|\cdot\|)$, where V is a linear space and $\|\cdot\|$ is a funtion $\|\cdot\|: V \to \mathbb{R}$, called norm, such that $\forall u, v \in V$ and $\forall \alpha \in \mathbb{R}$,

- $(1) \|u\| \ge 0,$
- (2) ||u|| = 0 if and only if u = 0,
- $(3) ||u+v|| \le ||u|| + ||v||,$
- (4) $\|\alpha u\| = |\alpha| \|u\|$.

Every norm induces a metric via $\rho(u, v) = ||u - v||$.

2. Exercises

- (1) (9.1.4+)
 - (a) Let X = C[a, b]. Show that $||f||_1 = \int_{[a, b]} |f|$ is a norm.
 - (b) Show that the norm above is not equivalent to $||f||_{\max}$ (i.e. that there are no constants $c_1, c_2 > 0$ such that $\forall f \in C[a, b], c_1 ||f||_1 \le ||f||_{\max} \le c_2 ||f||_1$.)
- (2) (\sim 9.1.5) Reminder: for sets A,B, their symmetric difference is defined as $A\triangle B=(A\setminus B)\cup (B\setminus A)$. The Nikodym Metric. Let E be a Lebesgue measurable set of real numbers of finite measure. Let E be the set of Lebesgue measurable subsets of E, and E Lebesgue measure. For E A, E Lebesgue measurable subsets of E, and E Lebesgue measure. For E A, E Lebesgue measurable subsets of E, and E Lebesgue measure. For E Lebesgue measurable subsets of E Lebesgue measurable subsets of E and E Lebesgue measurable subsets of E Lebesgue measurable subsets of E Lebesgue measurable subsets of E Lebesgue measurable set of real numbers of finite measurable set of real numbers of finite measurable set of E Lebesgue measurable subsets of E Lebesgue measurable set of E Lebesgue measurable subsets of E Lebesgue measurable set of
- (3) Give an example of a metric on \mathbb{R} not induced by any norm on \mathbb{R} .
- (4) (a) (9.1.6) Show that for $a, b, c \ge 0$, if $a \le b + c$, then $\frac{a}{1+a} \le \frac{b}{1+b} + \frac{c}{1+c}$. (*Hint:* Straightforward way: multiply by common denominator; sneaky way: use concavity/convexity of x/(1+x).)
 - (b) Let (X, ρ) be an arbitrary metric space. Prove that $(X, \frac{\rho}{1+\rho})$ is also a metric space.
 - NOTE. This turns any metric space into a bounded metric space.
 - (c) (9.1.10) Let $\{(X_n, \rho_n)\}$ be a countable collection of metric spaces. Show that ρ_* defines a metric space on the Cartesian product $\prod_{n=1}^{\infty} X_n$, where for points $x = \{x_n\}, y = \{y_n\} \in \prod_{n=1}^{\infty} X_n$,

$$\rho_*(x,y) = \sum_{n=1}^{\infty} \frac{1}{2^n} \frac{\rho_n(x_n, y_n)}{1 + \rho_n(x_n, y_n)}.$$

1

— see next page —

- (5) (9.2.20–22) For a subset E of a metric space X, a point $x \in X$ is called
 - an interior point of E if there is r > 0 s.t. $B(x,r) \subseteq E$; the collection of interior points of E is called the interior of E and denoted int E;
 - an exterior point of E if there is r > 0 s.t. $B(x,r) \subseteq X \setminus E$; the collection of exterior points of E is called the exterior of E and denoted ext E;
 - a boundary point of E if for all r > 0, $B(x,r) \cap E \neq \emptyset$ and $B(x,r) \cap (X \setminus E) \neq \emptyset$; the collection of boundary points of E is called the boundary of E and denoted bd E or ∂E .
 - (a) Prove that int E is always open and that E is open iff E = int E.
 - (b) Prove that ext E is always open and that E is closed iff $X \setminus E = \text{ext } E$.
 - (c) Prove that $\operatorname{bd} E$ is always closed; that E is open iff $E \cap \operatorname{bd} E = \emptyset$; and that that E is closed iff $\operatorname{bd} E \subseteq E$.
- (6) Let ρ and σ be two equivalent metrics on X.
 - (a) Prove that a sequence $\{x_n\}$ converges to x in (X, ρ) if and only if it converges to x in (X, σ) .
 - (b) Prove that a subset $E \subseteq X$ is open in (X, ρ) if and only if it is open in (X, σ) .

 (*Hint:* Actually, (a) \Leftrightarrow (b), but proving that is about is much effort as proving them separately.)

3. Extra Problem

- (7) Show that pointwise convergence in C[0,1] is not metrizable. That is, show that there does not exist a metric ρ on C[0,1] such that for $f_n, f \in C[0,1]$, a sequence $\{f_n\}$ converges pointwise to f if and only if $\lim_{n\to\infty} \rho(f_n, f) = 0$.
- (8) Suppose X is a nonempty set and ρ , σ are two metrics on X. Suppose that a sequence $\{x_n\}$ in X converges to x in (X, ρ) if and only if it converges to x in (X, σ) . Are ρ and σ are necessarily equivalent? (In other words, is converse to Problem 6a true?)